Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Inspired by observations of sunspots embedded in active regions, it is often assumed that large-scale, strong magnetic flux emerges from the Sun’s deep interior in the form of arched, cylindrical structures, colloquially known as flux tubes. Here, we continue to examine the different dynamics encountered when these structures are considered as concentrations in a volume-filling magnetic field rather than as isolated entities in a field-free background. Via 2.5D numerical simulations, we consider the buoyant rise of magnetic flux concentrations from a radiative zone through an overshooting convection zone that self-consistently (via magnetic pumping) arranges a volume-filling large-scale background field. This work extends earlier papers that considered the evolution of such structures in a purely adiabatic stratification with an assumed form of the background field. This earlier work established the existence of a bias that created an increased likelihood of the successful rise for magnetic structures with one (relative) orientation of twist and a decreased likelihood for the other. When applied to the solar context, this bias is commensurate with the solar hemispherical helicity rules (SHHRs). This paper establishes the robustness of this selection mechanism in a model incorporating a more realistic background state, consisting of overshooting convection and a turbulently pumped mean magnetic field. Ultimately, convection only weakly influences the selection mechanism, since it is enacted at the initiation of the rise, at the edge of the overshoot zone. Convection does however add another layer of statistical fluctuations to the bias, which we investigate in order to explain variations in the SHHRs.more » « less
-
Abstract Solar active regions and sunspots are believed to be formed by the emergence of strong toroidal magnetic flux from the solar interior. Modeling of such events has focused on the dynamics of compact magnetic entities, colloquially known as “flux tubes,” often considered to be isolated magnetic structures embedded in an otherwise field-free environment. In this paper, we show that relaxing such idealized assumptions can lead to surprisingly different dynamics. We consider the rise of tube-likeflux concentrationsembedded in a large-scale volume-filling horizontal field in an initially quiescent adiabatically stratified compressible fluid. In a previous letter, we revealed the unexpected major result that concentrations whose twist is aligned with the background field at the bottom of the tube are more likely to rise than the opposite orientation (for certain values of parameters). This bias leads to a selection rule which, when applied to solar dynamics, is in agreement with the observations known as the solar hemispheric helicity rule(s) (SHHR). Here, we examine this selection mechanism in more detail than was possible in the earlier letter. We explore the dependence on parameters via simulations, delineating the Selective Rise Regime, where the bias operates. We provide a theoretical model to predict and explain the simulation dynamics. Furthermore, we create synthetic helicity maps from Monte Carlo simulations to mimic the SHHR observations, and to demonstrate that our mechanism explains the observed scatter in the rule, as well as its variation over the solar cycle.more » « less
An official website of the United States government
